top of page
EXAMPLES & SOLUTIONS
Anchor 1

Two algebraic expressions that contain at least one absolute value to solve a problem.

The symbol sign (=) states that it is an equation.
Absolute values always equal to a positive number or zero.
Absolute value equations may have two solutions, one solutions or no solution.
Absolute equations with two solutions are compared to a postitive number.
Absolute value equations that are equal to zero have one solution.
One-variable absolute value equations can have more than one answer, but only one solution.
Absolute value equations that are less than or equal to a negative number have no solution.
ABSOLUTE VALUE EQUATION 
Explanation of absolute value equations

expression:  | x - 5 | = 3

Because we cannot know if | x | is neg. or pos, we must compare the number by making it neg. or pos. to discover the possible solutions.

Solve:

         | x - 5 |  =  -3  --absolute value?
         | x - 5 |  =  x - 5
           
 x - 5  =  -3 --updated equation
     x - 5 + 5  =  -3 + 5 --add 5 from both sides
 
          x + 0  =  2
         
      
   x  =  2


           | x - 5 |  =  3  --absolute value?
           | x - 5 |  =  x - 5
               x - 5  =  3 
--updated equation
       x - 5 + 5   =  3 + 5 --add 5 from both sides
 
            x + 0   =  8
         
        
  x   = 8

Solve:

Fact:  It is always good to verify (check) your answer.

Follow properties and PEMDAS:

Check:

   | x - 5 | = ?  
   | x - 5 | = 3
   | x - 5 | = 3  
--substitute 2 for x
   | 2  - 5 | = 3
         | -3 | = 3 
 --absolute value?
                3 = 3  --CORRECT

               x = 2  --Solution

   | x - 5 | = ?  
   | x - 5 | = 3
   | x - 5 | = 3  
--substitute 8 for x
   | 8 - 5 | = 3
           | 3 | = 3 
 --absolute value?
               3 = 3  --CORRECT


              x = 8  --Solution

Follow properties and PEMDAS:

Check:

Absolute Value Equations
Examples of absolute value equations with one solution

expression: | x - 5 | = 0

We must compare the number zero by making it neg. or pos.
Since -0 and +0 are the same (
 + 0 = 0), then there is only one solution.

Solve:

Follow properties and PEMDAS:

         | x - 5 | = 0  --absolute value?
         | x - 5 | =  x - 5
            
 x - 5 = 0  --updated equation
     x - 5 + 5  = 0 + 5 --subtract 5 from both sides
           x + 0  = 5
   
              x  =  5  

Solve:

Follow properties and PEMDAS:

         | x - 5 | = 0  --absolute value?
         | x - 5 | =  x - 5
           
 x - 5 = -0  --updated equation (-0 = 0)
     x - 5 + 5  = 0 + 5 --add 5 from both sides
           x + 0  = 5
     
             x  =  5  

Check:

         | x - 5 | = 0  --absolute value?
         | x - 5 | =  x - 5
             x - 5 = 0  
--updated equation
             5 - 5 = 0  --subtract 5 from both sides
                   0 = 0  --CORRECT
                    x = 5  --Solution

Fact:  Sometimes you can get an answer to a absolute value equation, but have no solution.

Absolute Value Equations
Examples of absolute value equations no solution

expression: 5 = | x + 2 |  + 8

Solve:

            5 = | x + 2 | + 8
    5 - 8 = | x + 2 | + 8 - 8  
--substract -8 from both sides
         -3 = | x + 2 | + 0
         -3 = | x + 2 |
| x + 2 | = x + 2 
 --absolute value?
         -3 = x + 2   --updated expression
  -3 - 2 = x + 2 - 2 
 --subtract -2 from both sides
  -3 - 2 = x + 0   --subtract rule
         -5 = x        

Check:

              5 = | x + 2 | + 8
              5 = | -5 + 2 | + 8
| -5 + 2 | = | -3 | = 3  
--absolute value?
               5 = 3 + 8  

               5 = 11  --INCORRECT
               x = -5  --Not a solution

Solve:

            5 = | x + 2 | + 8
    5 - 8 = | x + 2 | + 8 - 8  --substract -8 from both sides
         -3 = | x + 2 | + 0
         -3 = | x + 2 |

| x + 2 | = x + 2  
--absolute value?
  
 -(-3) = x + 2   --updated expression
           3  = x + 2  

     3 - 2 = x + 2 - 2  --subtract -2 from both sides
     3 - 2 = x + 2 - 2  --subtract -2 from both sides
            1 = x        

Check:

             5 = | x + 2 | + 8
             5 = | 1 + 2 | + 8
  | 1 + 2 | = | 3 | = 3  
-
-absolute value?
              5 = 3 + 8  

              5 = 11  --INCORRECT
              
x = 1  --Not a solution

Always simplify the equation before solving for the absoute value.

Absolute Value Equations
Example with absolute value equations with two solution

expression: | 2x - 4 |  + 8 = 10 

Solve:

         | 2x -4 | + 8 = 10    --add 2 to both sides
| 2x -4 | +  8 - 8 = 10 - 8
  --combine like terms
       | 2x - 4 |  - 0 =  2

               | 2x - 4 |  = 2x - 4  --absolute value?
                     2x - 4 = (+2)  --updated equation 
              2x - 4 + 4 = 2 + 4   --subtract 4 from both sides
                  2x + 0 = 6
                              2x = 6

                              2x  --updated expression         
                             -2     -2


                             x = 3

Check:

         | 2x -4 | + 8 = 10    --original equation
   | 2 (3) -4 | +  8 = 10 
--plug in solution, 3, and multiply
          | 6 - 4 |  + 8 =  10

                  | 6 -  4 | = | 2 | = 2  --absolute value?
                        2 + 8 =  10
                              10 =  10


                         x = 3  --Solution

Solve:

         | 2x -4 | + 8 = 10    --add 2 to both sides
| 2x -4 | +  8 - 8 = 10 - 8
  --combine like terms
       | 2x - 4 |  - 0 =  2

               | 2x - 4 |  = 2x - 4  --absolute value?
                     2x - 4 = (-2)  --updated equation 
              2x - 4 + 4 = -2 + 4   --subtract 4 from both sides
                  2x + 0 =  2
                              2x = 2

                              2x  --updated expression         
                               2       2


                             x = 1

Check:

         | 2x -4 | + 8 = 10    --original equation
    | 2 (1) -4 | +  8 = 10 
--plug in solution, 1, and multiply
         | 2 - 4 |  + 8 =  10

                  | 2 - 4 | = | -2 | =2  --absolute value?
                       2 + 8 =  10
                             10 =  10


                         x = 1 --Solution

bottom of page