top of page
EXAMPLES & SOLUTIONS
Anchor 1

Absolute expressions are algebriac expression with the absolute bar symbol.

Absolute value expressions always returns a pos. or zero value.
They utilize symbols: +,  -, *,  and / .
EVALUATE EXPRESSIONS
Explanation of evaluating absolute expressions

expression:   7 + | 3x - 4x | = ?,
                             if x = 3

Combine & Subtract like terms

7 + | 3x - 4x  |  --combine like terms
| 3x - 4x |  =  | -1x |  --substract rule like terms

| -1x | = 1x --absolute value?

Determine the absolute value

Follow properties and PEMDAS

        7 + 1x = ?  --update expression
7 +  (1)(3) =   --substitute 3 for x
         7 + 3  = 10  --substraction rule

Evaluating Expressions
Examples of evaluating expressions

ADDITION

 if x =  -1, evaluate:   x + | 3 + 7 |

 1)   | 3 + 7 | 
 --combine & add like terms
2)   | 3 + 7 | = | 10 | = 10  --absolute value?
3)   x + 10  --updated expression
4)  -1 + 10 --substitute -1 for x
5)  -1 + 10 = 9 
--addition rule

MULTIPLY

 if x =  -1, evaluate:   x * | 3 * 7 |

 1)   | 3 * 7 |   
--combine & multiply like terms
2)  | 3 * 7 | = | 21 | = 21 --absolute value?
3)   x + 21  --updated expression
4)  -1 * 2--substitute -1 for x
5)  -1 * 21 = -21 --multiplication rule

SUBTRACTION

 if x =  -1, evaluate:   x - | 3 - 7 |

 1)  | 3 - 7 |   
--combine & subtract like terms
2)   | 3 - 7 | = | -4 | = 4  --absolute value?
3)   x  - 4  --updated expression
4) -1 - 4   --substitute -1 for x
5)  -1 - 4 = -5  --subtraction rule

DIVISION

 if x =  -1, evaluate:     x  
                                        

 1)        
2)  | 3 * 1 | = | 3 | = 3  
--absolute value?
3)    x  

4)   -1 

 

3

--updated expression

| 3 * 1 |

--combine & multiply like terms

3

| 3 * 1 |

bottom of page