top of page
EXAMPLES & SOLUTIONS
Anchor 1
Absolute expressions are algebriac expression with the absolute bar symbol.
Absolute value expressions always returns a pos. or zero value.
They utilize symbols: +, -, *, and / .
EVALUATE EXPRESSIONS
Explanation of evaluating absolute expressions
expression: 7 + | 3x - 4x | = ?,
if x = 3
Combine & Subtract like terms
7 + | 3x - 4x | --combine like terms
| 3x - 4x | = | -1x | --substract rule like terms
| -1x | = 1x --absolute value?
Determine the absolute value
Follow properties and PEMDAS
7 + 1x = ? --update expression
7 + (1)(3) = --substitute 3 for x
7 + 3 = 10 --substraction rule
Evaluating Expressions
Examples of evaluating expressions
ADDITION
if x = -1, evaluate: x + | 3 + 7 |
1) | 3 + 7 | --combine & add like terms
2) | 3 + 7 | = | 10 | = 10 --absolute value?
3) x + 10 --updated expression
4) -1 + 10 --substitute -1 for x
5) -1 + 10 = 9 --addition rule
MULTIPLY
if x = -1, evaluate: x * | 3 * 7 |
1) | 3 * 7 | --combine & multiply like terms
2) | 3 * 7 | = | 21 | = 21 --absolute value?
3) x + 21 --updated expression
4) -1 * 21 --substitute -1 for x
5) -1 * 21 = -21 --multiplication rule
SUBTRACTION
if x = -1, evaluate: x - | 3 - 7 |
1) | 3 - 7 | --combine & subtract like terms
2) | 3 - 7 | = | -4 | = 4 --absolute value?
3) x - 4 --updated expression
4) -1 - 4 --substitute -1 for x
5) -1 - 4 = -5 --subtraction rule
DIVISION
if x = -1, evaluate: x
1)
2) | 3 * 1 | = | 3 | = 3 --absolute value?
3) x
4) -1
3
--updated expression
| 3 * 1 |
--combine & multiply like terms
3
| 3 * 1 |
bottom of page