top of page
EXAMPLES & SOLUTIONS
Anchor 1

A coordinate plane is a 2-dimensional surface formed by two intersecting lines that can be graphed to describe points and lines.

The horizontal line of the coordinate plane corresponds to the x-axis.
The vertical line of a coordinate plane corresponds to the y-axis.
These two axis' meet perpendicular at a point called the origin.
Each point of the coordinate plane can combine into a ordered pair.
Two-ordered pair can measure the distance from one point to the other.
4 COORDINATE PLANE QUADRANTS
Explanation the quadrant within a coordinate plane

-4

Quadrant I

(+, +)

4

Quadrant IV

(+, -)

3

4

5

(-, -)

Quadrant III

x-axis

2

-3

-2

-1

-5

-4

1

-2

-1

-3

Quadrant II

(-, +)

y-axis

0

2

3

1

origin

COORDINATE POINTS
How to place points on a coordinate plane

-5

-2

-1

-4

-3

5

3

4

2

1

(+2, +3)

A

(+5, -3)

D

-1

-2

-3

-4

4

3

2

1

(-1, -2)

C

(-3, 2)

B

A:  2 units             ,  from zero, then 3 units   =   {2,3}

B:  3 units             ,  from zero, then 2 units   =   {-3,+2}

C:  1 units             ,  from zero, then 2 units     =  {-1, -2}

D:  5 units             ,  from zero, then 3 units    =  {+5,-3}

MEASURING THE DISTANCE
Explaining the distance formula

W

3

4

5

2

-5

-4

-3

-2

-1

1

-3

-2

-1

-4

N

4

2

3

(x  - x   )

1

2

(y  - y   )

2

A

(2, 3)

B

(4, 2)

1

1

E

S

What is the unit distance from point A to point B?

What is point A:

(2, 3):

x   = 2
y   = 3

1

1

What is point B:

(4, 2):

x   = 4
y   = 2

2

2

Substitute the coordinate points

d=

(x   - x   )   +    

(y   - y   )    

2

2

1

2

1

2

d=

(2  - 4 )   + 

(3 - 2 )    

2

2

d=

(-2)   + 

  (1)    

2

2

d=

4 + 1

d=

5         or    2.236 units

bottom of page