top of page
EXAMPLES & SOLUTIONS
Anchor 1

They are considered a system of equations whose lines are parallel, therefore, have no solution.

Parallel lines do not coincide.
They form NO solution.
GRAPHING PARALLEL LINES
Explanation of a system of equations that form parallel lines
Standard Form
Ax  +  By  =  C
-2x  +  y  = 2 -2x  +  y  =  4
FIRST STEP: CREATE INITIAL LINEAR LINES
X- & Y- INTERCEPT TECHNIQUE
Discover the X- & Y-intercept 
    -2x + y = 4
           if x = 0, then
-2(0) + y = 4
         0 + y = 4
                 y = 4
y -intercept = 4                 (0, 4)
    -2x + y = 2
           if x = 0, then
-2(0) + y = 2
         0 + y = 2
                 y =  2
y -intercept = 2                 (0, 2)
Equation #1
X & Y- Intercept
Ax + By = C

-2x  +  y  =  2
Discover the y-intercept
Equation #2
X & Y- Intercept
Ax + By = C

-2x  +  y  =  4
Discover the y-intercept
Discover the x-intercept
-2x +y = 2
       if y = 0, then
-2x + 0 = 2
        -2x = 2
        -2x =  2

             x = -1
x-intercept = -1                   (-1, 0)
-2     -2
Discover the x-intercept
-2x + y = 4
       if y = 0, then
-2x + 0 = 4
        -2x = 4
           -2x =  4

                 x = -2
x-intercept = -2
             (-2, 0)
-2     -2
Place the x-intercept and y-intercept points on the graph to create linear line

4

-4

Equation #1: 

 (a, 0) = (-1, 0)

 (0, b) = (0, 2 )

-2

4

-2

2

2

Equation #2: 

 (0, b) = (0, 4)

 (a, 0) = (-2, 0)

4

-4

-2

4

2

2

SECOND STEP: DISCOVER THE SLOPE
SLOPE FORMULA
Discover the slope from the two intercepting points
Discover the slope
Discover the slope




                      if,
        y-intercept (0, 2) &
        x-intercept (-1, 0)
                   then, 
    
     
                 0 - 2           -2 
                -1 - 0           -1
m = rise
         run
m =                 =           




                       if,
        y-intercept (0, 4) &
        x-intercept (-2, 0)
                   then, 
    
     
             
   0 - 4        -4        -2
               -2 - 0       -2         -1
m = rise
         run
m =                  =           =
Draw the slope for each graph. This assist in ensuring the right linear direction.
Equation #1: 

2 units

1 unit

 (-1, 0)

(0, 2 )

4

-2

2

2

-2

-4

 4

Equation #2: 

(0, 4)

(-2, 0)

4

-2

4

2

2 units

1 unit

P (-1, 3)

-4

SOLUTION
Discovering the x & y-intercept & slope is a way of solving a system of equations. 

Rule:
Both
slopes are equal
Both
y-intercepts are not equal

Equation #2

-2x + y =  4

m = -2
             1

Equation #1

-2x + y = -2

m = -2
             1

4

2

2

-2

-4

 4

Equation #1
slope = -2/-1 = -2
y-intercept = (0, 2)
Equation #2
slope = -2/1 = -2
y-intercept = (0, 4)

Solution: None

Parallel equations have lines that do not intercept at any point.

The slope are equal.
The y-intercept are not equal.
The two linear lines are interdependent system of equations.
The y-value cannot depend on x-value to solve the equation, therefore, the equations are inconsistent.
Graphically these linear lines 
DO  NOT INTERSECT
thus, there is 
NO solution 

You are observing

parallel lines.
bottom of page