top of page
EXAMPLES & SOLUTIONS
Anchor 1

It requires that you know how many input values are associated with each output value.

Functions are always linear.
​Not every equation is a function.
Creating a graph can assist in determining if a curve is a function or not.
Another technique is to simply observe a graph to determine if it is a function.
This method is called the vertical line test.
IDENTIFY FUNCTIONS
Explanation of how to identify one-to-one functions
EXAMPLE: LINEAR EQUATION
f(x) =  1x + 3       

4

8

6

7

5

3

1

2

-1

-3

-2

-2

-4

-6

(-3,0)

(-5, -2)

-6

-8

-7

-9

-5

-4

(3, 6)

(5, 8)

 (0, 3)

Equation

y =  x   + 3

8

6

4

Domain: 
Range:
x-intercept: (-3, 0)
y-intercept: (0, 3)

(-       ,       )
O
O
O
O
(-       ,       )
O
O
O
O

Equation Table

y

3

0

-2

x

input       association     output

 f(x) = 1x + 3 

   1(0) + 3

1(-3) + 3 

 1(3) + 3

1(-5) + 3

0

-3

   1(5) + 3

8

3

6

-5

5

Functions can have one x-input for every y-output
ONE - to - ONE
0
-3
3
5
-5
3
0
6
8
-2
IDENTIFY FUNCTION
Explanation of how to identify many-to-one functions
EXAMPLE: ABSOLUTE EQUATION
f(x) =  | x | + 1

Equation

(2, 3)

 (4, 5)

y = | x | + 1

-3

-6

-8

-7

-10

-9

-5

-4

8

6

4

4

 (0, 1 )

8

6

7

5

1

2

3

-1

-2

-2

-4

-6

 (-4, 5)

(-2, 3)

Domain: 
Range:
vertex: (0, 1)

( -    ,      )
 O
O
O
O
[  1,        )
O
O

Equation Table

y

1

3

3

5

-4

          | -4 | + 1

5

            | 4 | + 1

4

x

input       association     output

 f(x) = | x | + 1

             | 0 | + 1

             | 2 | + 1

          | -2 | + 1

0

2

-2

Functions can have many inputs to one output
MANY - to - ONE
0
2
-2
4
-4
1
3
5

Fact: To consider a function a function, each x-value can have only one  y-value

IDENTIFY NON-FUNCTIONS
Explanation of how to identify one-to-many functions
EXAMPLE: PARABOLA
   x   =   y           
2

8

6

7

8

5

(4, -2)

3

4

-6

-7

-4

6

(4, 2)

(1, 1)

1

(1, -1)

-1

-2

-2

-3

-5

-4

2

 (0, 0 )

2

y  =        x

y  =   -       x

Equation

x  =  y

2

Domain: 
Range:
x-intercept: (0, 0)
y-intercept:  (0,0)

(-      ,       )
 O
O
O
O
[0,        )
O
O

Equation Table

y

0

1

x

input       association      output

0

x  = y    =     y 

2

0

     + 1

4

  + 2

+        1
 +      4
Functions CANNOT have one input to many outputs
ONE- to - MANY
0
2
4
0
1
-1
-2
2
IDENTIFY NON-FUNCTIONS
Explanation of how to identify many-to-many
EXAMPLE: EXPONENT (SQUARE ROOT)
 x  + y  = 25  

2

2

8

7

6

5

4

1

2

3

 (3, -4)

(0, -5)

-6

 (-3, -4 )

-4

-3

-4

-1

-2

-2

-6

-8

-7

-10

-9

-5

(5, 0)

Equation

x    +  y     = 25

2

2

(-5, 0)

 (-3, 4)

6

(3, 4)

(0, 5)

2

4

Domain: 
Range: 
x-intercept: 
y-intercept:

( -5, 0), (5, 0)
(0, -5), (0, 5)
| -5, 5 | , -5 < x < 5
| -5, 5 | , -5 < y < 5

Equation Table

-3

           -3   + y    = 25

2

2

 (-3)(-3) + y    = 25 - 9

2

 9 - 9 + y   =

2

16

+ 4

=

y

2

16

-5

 (-5)(-5) + y    = 25 - 5

2

           -5   + y    = 25

2

2

   25 - 25 + y   =

2

25-25

=

y

2

0

0

5

           -5   + y    = 25

2

2

0

0

 5 - 5 + y   =

2

25

 5 - 5 + y   =

2

25

=

y

2

25

      (5)(5) + y    = 25 - 5

2

   25 - 25 + y   =

2

25-25

=

y

2

0

               0  + y  = 25

                0 + y    = 25 - 9

2

+ 5

             3   + y    = 25

2

2

     ( 3)( 3) + y    = 25 - 9

2

+ 4

y

 9 - 9 + y    =

2

16

=

y

2

16

 3

 x  + y  = 25  

2

2

input           association           output

x

Functions CANNOT have many inputs to the many outputs
MANY to MANY
0
-3
3
5
-5
-5
5
4
-4
0
ANOTHER WAY OF IDENTIFYING FUNCTIONS
bottom of page