top of page
EXAMPLES & SOLUTIONS
Anchor 1

A mathematical equation in which two expressions are not equal to each other.

This states that the expression on one side may not equal the expression on the other side. 
Many x-values can be substituted to make the equation correct.
The possible symbol signs for the equation are >,  <,  
> ,  <.
If the operators <, > are utilized then one side is not equal to the other side.
Operators < , >  have one side that is not equal to each other. If they are equal, then they are only being compared.
INEQUALITY EQUATIONS
Explanation of equations with inequalities

inequality:  x -  3 - 7  <  10, x = ?

Solve:

Follow properties and PEMDAS:

    x - 3 - 7 < 10  --combine & subtract like terms
          x -10 < 10  --updated inequality
x - 10 + 10 < 10 + 10  --add 10 to both sides
           x + 0 < 20
             x < 20

Fact:  It is always good to verify (check) your answer.

Check:

Follow properties and PEMDAS:

 x - 3 - 7 < 10  --original problem
      x - 10 < 10  --combine terms
      3 - 10 < 10  --substitute any number x < 20, x = 3               -7 < 10    --CORRECT 

Inequality Equations
Example of inequality equations

equation:  7 +  3x - 4x  < 35

Solve:

7 +  3x + 4x  < 35 --combine & add like terms
            7 + 7x < 35  
      7 - 7 + 7x < 35 - 7 
--subtract 7 from both sides
            0 + 7x < 28  
                   7x < 28  --updated equation
                   7x < 28   --divide 7 from both sides
                  
                   
 
x < 4

7       7

Check:

       7 +  3x + 4x < 35  --substitute any value < 4; x = 4
7 +  3(4) + 4(4) < 35  --multiply rule
             7 + 12 + 16 < 35   --addition rule
                            35 < 35  --CORRECT 

Check:

       7 +  3x + 4x < 35  --substitute any value < 4; x = 2
7 +  3(2) + 4(2) < 35  --multiply rule
              7 + 6 + 8 < 35   --addition rule
                            21 < 35  --CORRECT 

Inequality Equations
Another example of inequality equations

equation:  -3n - 1  >  8

Solve:

        -3n - 1  >  8  
  -3n -1 + 1  >  8 + 1   
--subtract rule
      -3n + 0  >  9  --updated expression
             -3n  >  9  --subtract 6 from both sides
             -3n  >    9 
   

                 n < -3   

-3       -3

 --divide 3 from both sides
--switch signs

Check:

      -3n - 1 > 8  --substitute any value < -3, n = -3
-3(-3) - 1 > 8  --multiply rule
           9 - 1 >--subtraction rule           
               
8 > 8    --CORRECT 

Check:

      -3n - 1 > 8  --substitute any value < -3, n = -6
-3(-6) - 1 > 8  --multiply rule          
          18 - 1
> --subtraction rule                 
               
 17 > 8    --CORRECT 

bottom of page