top of page

Important aspects of linear equations are transforming equations, understanding linear patterns, discovering the slope, y-intercept and points.

There are many reasons you may need to create a new linear equation.
You may need to transform one format to the another format to solve a problem.
Writing equations can assist in understanding the pattern of data from a table.
WRITING EQUATIONS FROM VARIOUS ASPECTS
Writing equations by converting equations with equations, points and tables
CONVERTING EQUATIONS
Converting standard and slope-intercepts forms
STANDARD FORM TO SLOPE-INTERCEPT FORM
Explanation of converting standard form to slope-intercept form
Standard Form
Ax  +  By  =  C
           Ax + By + C = 0 --standard form
      Ax + By + C - C = 0 - C
            Ax + By + 0 = -C
           Ax - Ax + By = -Ax - C
                    0 + By = -Ax - C                                                By = -Ax - C

                          
B      B     B
y = -Ax - C             
       B     B
where,

m = -Ax 
            B 

and

y-intercept = b = 
                                        

y  =  mx  +  b  --slope-intercept

 C
 B
Standard Form to Slope-Intercept Form
Examples of converting formats
          2x - y = 3

2x - 2x - y  =  3 - 2x
            0 - y  =  -2x + 3
                 -y  -2x + 3
                 

                 y  =  2x - 3   
-1         -1      -1


x - x -2y  =  -x - 8
     0 - 2y  =  -x - 8
          -2y  =  -x  - 8
            
              y  =    1x  +  4
                              
-2         -2    -2
     x - 2y = -8
  2
          3x - 9y = -18
-9         -9     -9
3x - 3x - 9y = -3x - 18
            0 - 9y = -3x -18
                 -9y = -3x -18
                  
                     y =  3x  + 2
                              
 9 

1

change in y  A 
                        
change in x  =  B

1

Slope-Intercept form to Standard Form
Explanation of converting  slope-intercept form to standard form
Slope-Intercept
y  =  mx  +  b
m = 
y  -  y

2

x  -  x

2

=
when 
      -Ax  = 0      
        B

then,
y-intercept = b =  
                              B
y = mx + b OR
y = 
-Ax - C            
       
(B)y = -Ax (B) + C (B)
             

By = -Ax + C  
--updated expression
Ax + By = -Ax + Ax + C  --subtract Ax from both sides
Ax + By = 0 + C
Ax + By =  C  
--standard form
   B           B
     B    B
--multiply B by each side
Slope-Intercept Form to Standard Form
Examples of converting formats
     

     (3)y = -7x (3) - 12 (3)
                   
         3y =  -7x - 36
7x + 3y = -7x + 7x - 36
7x + 3y = 0 - 36
7x + 3y = -36
         y = -7x - 12
                   3
3


      (5)y = -3x (5) + 5(5)

          5y = -3x + 25
3x + 5y = -3x + 3x + 25
3x + 5y = 0 + 25
3x + 5y = 25
           y = -3x + 5
                     5
5
            y = 4x + 6
-4x + y = 4x - 4x + 6
-4x + y = 0 + 6
-4x + y = 6
CONVERTING WITH TWO POINTS
Converting two coordiante points into slope-intercept format
TWO POINTS: POINT-SLOPE TO SLOPE-INTERCEPT FORM
Explanation and example of converting two points into slope-intercept form utilizing point-slope form
                              2 POINTS
A line passing through points (-2, 5), (2, 1)

1

2

2

1

x   = -2
x   = 2
y   =  5
y   = 1
Discover the slope
m = 
x  -  x

2

y  -  y

2

1

1

   1  - 5    
2 - (-2)
-1
 -4   
2 + 2
-4
  4
Convert utilizing the point-slope format
(y  -  y   ) =

1

m
(x   - x   )

1

                  y -(5)  =  -1(x - 2)  --substitute slope, x-value & y-value
            y - 5 + 5   =  -1x  - 2 + 5
                
      y + 0 =  -1x  + 3
           
                y =  -1x  +  3 --slope-intercept           
where, 

1

1


x   =   2

y   =  5 


m =  -1
CONVERTING WITH ONE POINT
Converting coordinate points into slope-intercept form
ONE POINT:  POINTS INTO SLOPE-INTERCEPT FORM
Explanation and example of converting one point into slope-intercept form utilizing point-slope form
1 Point & Slope
A line passing through points (2, 3),  with a slope of 4

1

1


x   = 2

y   = 3


m = 4
where, 
Convert utilizing the point-slope format

1

(y  -  y ) =

1

m
(x   - x   )
          y -(3)  = 4(x - 2)  --substitute slope, x-value & y-value
             y - 3  = 4x - 8 
     y  - 3 + 3  = 4x - 8 + 3  
--add 3 to both sides
             y + 0  = 4x - 5
                    
 y = 4x - 5  --slope-intercept  
CONVERTING FROM TABLES
Converting coordinate tables to slope-intercept

Solve the Equation

x

2x + 3

-3

-2

-1

0

2(-3) + 3

2(-2) + 3

2(-1) + 3

2(0) + 3

y

-3

-1

1

3

=

=

=

=

Discover the slope from the table

x

-3

-2

-1

0

+1

+1

+1

y

-3

-1

1

3

+2

+2

+2

change in x = 1
change in
y = 2

Rate of change or slope

m = 

change in y
change in x

=

2
1

2
Convert utilizing the point-slope format
Choose a point coordinate ( 1, 5) from the table

1

1


x   = 1

y   = 5


m =  2
where, 
(y  -  y ) =

1

m
(x   - x   )

1

           (y - 5)  =  2(x - 1)  --substitute x-value, y-value & slope
               y - 5  =  2x - 2
        y  - 5 + 5 =  2x - 2 + 5 
--add 5 to both sides
                y + 0 =  2x + 3
                          y =  2x + 3  --slope-intercept  
m
(x   -     )
 
x

1

bottom of page